概念
布隆过滤器(英语:Bloom Filter)是1970年由一个叫布隆的小伙子提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。
- 优点: 空间效率和查询时间都远远超过一般的算法
- 缺点: 有一定的误识别率和删除困难。
原理
布隆过滤器的原理是,当一个元素被加入集合时,通过 K
个散列函数将这个元素映射成一个位数组中的 K
个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:
- 如果这些点有任何一个0,则被检元素一定不在;
- 如果都是1,则被检元素很可能在
这就是布隆过滤器的基本思想。
Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。
缓存穿透
每次查询都会直接打到DB
简而言之,言而简之就是我们先把我们数据库的数据都加载到我们的过滤器中,比如数据库的id现在有:1、2、3
那就用id:1 为例子, 他在上图中经过三次hash之后,把三次原本值0的地方改为1
下次数据进来查询的时候如果id的值是1,那么我就把1拿去三次hash 发现三次hash的值,跟上面的三个位置完全一样,那就能证明过滤器中有1的, 反之如果不一样就说明不存在了
那应用的场景在哪里呢?一般我们都会用来防止缓存击穿
简单来说就是你数据库的id都是1开始然后自增的,那我知道你接口是通过id查询的,我就拿负数去查询,这个时候,会发现缓存里面没这个数据,我又去数据库查也没有,一个请求这样,100个,1000个,10000个呢?你的DB基本上就扛不住了,如果在缓存里面加上这个,是不是就不存在了,你判断没这个数据就不去查了,直接return一个数据为空不就好了嘛。
Bloom Filter缺点
bloom filter之所以能做到在时间和空间上的效率比较高,是因为牺牲了判断的准确率、删除的便利性
存在误判,可能要查到的元素并没有在容器中,但是hash之后得到的k个位置上值都是1。如果bloom filter中存储的是黑名单,那么可以通过建立一个白名单来存储可能会误判的元素。
删除困难。一个放入容器的元素映射到bit数组的k个位置上是1,删除的时候不能简单的直接置为0,可能会影响其他元素的判断。可以采用Counting Bloom Filter
Guava本地实现
布隆过滤器有许多实现与优化,Guava
中就提供了一种Bloom Filter
的实现。
在使用bloom filter时,绕不过的两点是预估数据量n 以及 期望的误判率fpp,
在实现bloom filter时,绕不过的两点就是hash函数的选取 以及 bit数组的大小。
对于一个确定的场景,我们预估要存的数据量为n,期望的误判率为fpp,然后需要计算我们需要的Bit数组的大小m,以及hash函数的个数k,并选择hash函数
Bit数组大小选择
根据预估数据量n以及误判率fpp,bit数组大小的m的计算方式:
哈希函数选择
由预估数据量n以及bit数组长度m,可以得到一个hash函数的个数k:
哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。
哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考Bloom Filters - the math,Bloom_filter-wikipedia
要使用BloomFilter,需要引入guava包:
1 | <dependency> |
测试分两步:
1、往过滤器中放一百万个数,然后去验证这一百万个数是否能通过过滤器
2、另外找一万个数,去检验漏网之鱼的数量
1 | /** |
运行结果:
运行结果表示,遍历这一百万个在过滤器中的数时,都被识别出来了。一万个不在过滤器中的数,误伤了320个,错误率是0.03左右。
看下BloomFilter的源码:
1 | public static <T> BloomFilter<T> create(Funnel<? super T> funnel, int expectedInsertions) { |
BloomFilter一共四个create方法,不过最终都是走向第四个。看一下每个参数的含义:
funnel:数据类型(一般是调用Funnels工具类中的)
expectedInsertions:期望插入的值的个数
fpp 错误率(默认值为0.03)
strategy 哈希算法(我也不懂啥意思)Bloom Filter的应用
在最后一个create方法中,设置一个断点:
上面的numBits,表示存一百万个int类型数字,需要的位数为7298440,700多万位。理论上存一百万个数,一个int是4字节32位,需要481000000=3200万位。如果使用HashMap去存,按HashMap50%的存储效率,需要6400万位。可以看出BloomFilter的存储空间很小,只有HashMap的1/10左右
上面的numHashFunctions,表示需要5个函数去存这些数字
使用第三个create方法,我们设置下错误率:
1 | private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total, 0.0003); |
再运行看看:
此时误伤的数量为4,错误率为0.04%左右。
当错误率设为0.0003时,所需要的位数为16883499,1600万位,需要12个函数
和上面对比可以看出,错误率越大,所需空间和时间越小,错误率越小,所需空间和时间越大。
Redis实现
RedisBloom实现
Redis的布隆过滤器不是原生自带的,而是要通过module加载进去。Redis在4.0的版本中加入了module功能。
RedisBloom github
主页地址: https://github.com/RedisBloom/RedisBloomRedisBloom客户端
主页地址: https://github.com/RedisBloom/JRedisBloom
上面有docker一键启动命令,可以很方便地实验。也有几种主流语言的客户端库的链接,比如Java语言的JReBloom。
RedisBloom模块还实现了布谷鸟过滤器,它算是对布隆过滤器的增强版。解决了布隆过滤器的一些比较明显的缺点,比如:不能删除元素,不能计数等。除此之外,布谷鸟过滤器不用使用多个hash函数,所以查询性能更高。除此之外,在相同的误判率下,布谷鸟过滤器的空间利用率要明显高于布隆,空间上大概能节省40%多。
- 安装Rebloom插件
1 下载并编译
1 | git clone git://github.com/RedisLabsModules/rebloom |
将Rebloom加载到Redis中,在redis.conf里面添加
1 | loadmodule /path/to/rebloom.so |
命令操作
1 | BF.ADD bloom redis |
命令行加载rebloom插件,并且设定每个bloomfilter key的容量和错误率:
1 | cd /usr/redis-4.0.11 |
- java-lua版操作(java代码不提供了,自己把脚本执行就行)
bloomFilterAdd.lua
1 | local bloomName = KEYS[1] |
bloomFilterExist.lua
1 | local bloomName = KEYS[1] |
Bitmap简单实现-原理版
Bitmap不是一个确切的数据类型,而是基于String类型定义的一系列面向位操作的方法。因为String是二进制安全的并且它们的最大长度是512MB,
所以String类型很合适去作为一个2^32 长度的位数组。
位操作方法可以被分为两组:
一、对单一位的操作,比如设置某一位为1或0,或者得到这一位的值;
二、对一组位的操作,比方说计算一定范围内的1的个数(比如计数)
bitmap一个最大的优势是它通常能在存储信息的时候节省大量空间。比方说一个用增量ID来辨别用户的系统,可以用仅仅512MB的空间来标识40亿个用户是否想要接受通知。
1 | public class BloomFilter { |
常见应用场景
cerberus在收集监控数据的时候, 有的系统的监控项量会很大, 需要检查一个监控项的名字是否已经被记录到db过了, 如果没有的话就需要写入db.
爬虫过滤已抓到的url就不再抓,可用bloom filter过滤
垃圾邮件过滤。如果用哈希表,每存储一亿个 email地址,就需要 1.6GB的内存(用哈希表实现的具体办法是将每一个 email地址对应成一个八字节的信息指纹,然后将这些信息指纹存入哈希表,由于哈希表的存储效率一般只有 50%,因此一个 email地址需要占用十六个字节。一亿个地址大约要 1.6GB,即十六亿字节的内存)。因此存贮几十亿个邮件地址可能需要上百 GB的内存。而Bloom Filter只需要哈希表 1/8到 1/4 的大小就能解决同样的问题。