Redis入门教程

redis 的线程模型

redis 内部使用文件事件处理器 file event handler,这个文件事件处理器是单线程的,所以 redis 才叫做单线程的模型。它采用 IO 多路复用机制同时监听多个 socket,将产生事件的 socket 压入内存队列中,事件分派器根据 socket 上的事件类型来选择对应的事件处理器进行处理。

文件事件处理器的结构包含 4 个部分:

  • 多个 socket
  • IO 多路复用程序
  • 文件事件分派器
  • 事件处理器(连接应答处理器、命令请求处理器、命令回复处理器)

多个 socket 可能会并发产生不同的操作,每个操作对应不同的文件事件,但是 IO 多路复用程序会监听多个 socket,会将产生事件的 socket 放入队列中排队,事件分派器每次从队列中取出一个 socket,根据 socket 的事件类型交给对应的事件处理器进行处理。

来看客户端与 redis 的一次通信过程:

要明白,通信是通过 socket 来完成的,不懂的同学可以先去看一看 socket 网络编程。

首先,redis 服务端进程初始化的时候,会将 server socket 的 AE_READABLE 事件与连接应答处理器关联。

客户端 socket01 向 redis 进程的 server socket 请求建立连接,此时 server socket 会产生一个 AE_READABLE 事件,IO 多路复用程序监听到 server socket 产生的事件后,将该 socket 压入队列中。文件事件分派器从队列中获取 socket,交给连接应答处理器。连接应答处理器会创建一个能与客户端通信的 socket01,并将该 socket01 的 AE_READABLE 事件与命令请求处理器关联。

假设此时客户端发送了一个 set key value 请求,此时 redis 中的 socket01 会产生 AE_READABLE 事件,IO 多路复用程序将 socket01 压入队列,此时事件分派器从队列中获取到 socket01 产生的 AE_READABLE 事件,由于前面 socket01 的 AE_READABLE 事件已经与命令请求处理器关联,因此事件分派器将事件交给命令请求处理器来处理。命令请求处理器读取 socket01 的 key value 并在自己内存中完成 key value 的设置。操作完成后,它会将 socket01 的 AE_WRITABLE 事件与命令回复处理器关联。

如果此时客户端准备好接收返回结果了,那么 redis 中的 socket01 会产生一个 AE_WRITABLE 事件,同样压入队列中,事件分派器找到相关联的命令回复处理器,由命令回复处理器对 socket01 输入本次操作的一个结果,比如 ok,之后解除 socket01 的 AE_WRITABLE 事件与命令回复处理器的关联。

这样便完成了一次通信。关于 Redis 的一次通信过程,推荐读者阅读《Redis 设计与实现——黄健宏》进行系统学习。

redis单线程模型为什么快

1、完全基于内存,绝大部分请求是纯粹的内存操作,非常快速。数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1);

2、数据结构简单,对数据操作也简单,Redis中的数据结构是专门进行设计的;

3、采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;

4、使用多路I/O复用模型,非阻塞IO

5、使用底层模型不同,它们之间底层实现方式以及与客户端之间通信的应用协议不一样,Redis直接自己构建了VM 机制,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求;

6、C 语言实现,一般来说,C 语言实现的程序“距离”操作系统更近,执行速度相对会更快。

以上几点都比较好理解,下边我们针对多路 I/O 复用模型进行简单的探讨:

(1)多路 I/O 复用模型

多路I/O复用模型是利用 select、poll、epoll 可以同时监察多个流的 I/O 事件的能力,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有 I/O 事件时,就从阻塞态中唤醒,于是程序就会轮询一遍所有的流(epoll 是只轮询那些真正发出了事件的流),并且只依次顺序的处理就绪的流,这种做法就避免了大量的无用操作。

这里“多路”指的是多个网络连接,“复用”指的是复用同一个线程。采用多路 I/O 复用技术可以让单个线程高效的处理多个连接请求(尽量减少网络 IO 的时间消耗),且 Redis 在内存中操作数据的速度非常快,也就是说内存内的操作不会成为影响Redis性能的瓶颈,主要由以上几点造就了 Redis 具有很高的吞吐量。

redis持久化

持久化的两种方式

  • RDB:内存快照,全量;是对 redis 中的数据执行周期性的快照。
  • AOF:对每条写入命令作为日志,以 append-only 的模式写入一个日志文件中,在 redis 重启的时候,可以通过回放 AOF 日志中的写入指令来重新构建整个数据集。类似于mysql的binlog, 存储紧张时会进行压缩,指令合并

如果 redis 挂了,服务器上的内存和磁盘上的数据都丢了,可以从云服务上拷贝回来之前的数据,放到指定的目录中,然后重新启动 redis,redis 就会自动根据持久化数据文件中的数据,去恢复内存中的数据,继续对外提供服务。

如果同时使用 RDB 和 AOF 两种持久化机制,那么在 redis 重启的时候,会使用 AOF 来重新构建数据,因为 AOF 中的数据更加完整

RDB 优缺点

优点

  • RDB 会生成多个数据文件,每个数据文件都代表了某一个时刻中 redis 的数据,这种多个数据文件的方式,非常适合做冷备,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说 Amazon 的 S3 云服务上去,在国内可以是阿里云的 ODPS 分布式存储上,以预定好的备份策略来定期备份 redis 中的数据。

  • RDB 对 redis 对外提供的读写服务,影响非常小,可以让 redis 保持高性能,因为 redis 主进程只需要 fork 一个子进程,让子进程执行磁盘 IO 操作来进行 RDB 持久化即可。

  • 相对于 AOF 持久化机制来说,直接基于 RDB 数据文件来重启和恢复 redis 进程,更加快速

缺点

  • 如果想要在 redis 故障时,尽可能少的丢失数据,那么 RDB 没有 AOF 好。一般来说,RDB 数据快照文件,都是每隔 5 分钟,或者更长时间生成一次,这个时候就得接受一旦 redis 进程宕机,那么会丢失最近 5 分钟的数据

  • RDB 每次在 fork 子进程来执行 RDB 快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒

AOF 优缺点

优点

  • AOF可以更好的保护数据不丢失,一般 AOF 会每隔 1 秒,通过一个后台线程执行一次fsync操作,最多丢失 1 秒钟的数据。

  • AOF日志文件以append-only 模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复。

  • AOF日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在 rewrite log 的时候,会对其中的指令进行压缩,创建出一份需要恢复数据的最小日志出来。在创建新日志文件的时候,老的日志文件还是照常写入。当新的 merge 后的日志文件 ready 的时候,再交换新老日志文件即可。

  • AOF日志文件的命令通过可读的方式进行记录,这个特性非常适合做灾难性的误删除的紧急恢复。比如某人不小心用 flushall 命令清空了所有数据,只要这个时候后台 rewrite 还没有发生,那么就可以立即拷贝 AOF 文件,将最后一条 flushall 命令给删了,然后再将该 AOF 文件放回去,就可以通过恢复机制,自动恢复所有数据。

缺点

  • 对于同一份数据来说,AOF 日志文件通常比 RDB 数据快照文件更大。

  • AOF开启后,支持的写QPS会比RDB支持的写 QPS 低,因为 AOF 一般会配置成每秒 fsync 一次日志文件,当然,每秒一次 fsync,性能也还是很高的。(如果实时写入,那么 QPS 会大降,redis 性能会大大降低)

  • 以前 AOF 发生过 bug,就是通过 AOF 记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似 AOF 这种较为复杂的 基于命令日志 merge 回放 的方式,比基于 RDB 每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有 bug。不过 AOF 就是为了避免 rewrite 过程导致的 bug,因此每次 rewrite 并不是基于旧的指令日志进行 merge 的,而是基于当时内存中的数据进行指令的重新构建,这样健壮性会好很多。

持久化方案

  • 不要仅仅使用 RDB,因为那样会导致你丢失很多数据;

  • 也不要仅仅使用 AOF,因为那样有两个问题:第一,你通过 AOF 做冷备,没有 RDB 做冷备来的恢复速度更快;第二,RDB 每次简单粗暴生成数据快照,更加健壮,可以避免 AOF 这种复杂的备份和恢复机制的 bug;

  • redis支持 同时开启开启两种持久化方式,我们可以综合使用 AOF 和 RDB 两种持久化机制,用 AOF 来保证数据不丢失,作为数据恢复的第一选择; 用 RDB 来做不同程度的冷备,在 AOF 文件都丢失或损坏不可用的时候,还可以使用 RDB 来进行快速的数据恢复

redis高并发和高可用

redis 实现高并发主要依靠主从架构,一主多从,一般来说,很多项目其实就足够了,单主用来写入数据,单机几万 QPS,从用来查询数据,多个从实例可以提供每秒 10w 的 QPS。

如果想要在实现高并发的同时,容纳大量的数据,那么就需要 redis 集群,使用 redis 集群之后,可以提供每秒几十万的读写并发。

redis高可用,如果是做主从架构部署,那么加上哨兵就可以了,就可以实现,任何一个实例宕机,可以进行主备切换。

redis主从架构

单机的 redis,能够承载的 QPS 大概就在上万到几万不等。对于缓存来说,一般都是用来支撑读高并发的。因此架构做成主从(master-slave)架构,一主多从,主负责写,并且将数据复制到其它的 slave 节点,从节点负责读。所有的读请求全部走从节点。这样也可以很轻松实现水平扩容,支撑读高并发。

redis replication -> 主从架构 -> 读写分离 -> 水平扩容支撑读高并发

redis replication 的核心机制

  • redis 采用异步方式(master 每次接收到写命令之后,先在内部写入数据,然后异步发送给 slave node)复制数据到 slave 节点,不过 redis2.8 开始,slave node 会周期性地确认自己每次复制的数据量;

  • 一个 master node 是可以配置多个 slave node 的;

  • slave node 也可以连接其他的 slave node;

  • slave node 做复制的时候,不会 block master node 的正常工作;

  • slave node 在做复制的时候,也不会 block 对自己的查询操作,它会用旧的数据集来提供服务;但是复制完成的时候,需要删除旧数据集,加载新数据集,这个时候就会暂停对外服务了;

  • slave node 主要用来进行横向扩容,做读写分离,扩容的 slave node 可以提高读的吞吐量。

注意,如果采用了主从架构,那么建议必须开启 master node 的持久化,不建议用 slave node 作为 master node 的数据热备,因为那样的话,如果你关掉 master 的持久化,可能在 master 宕机重启的时候数据是空的,然后可能一经过复制, slave node 的数据也丢了。

另外,master 的各种备份方案,也需要做。万一本地的所有文件丢失了,从备份中挑选一份 rdb 去恢复 master,这样才能确保启动的时候,是有数据的,即使采用了后续讲解的高可用机制,slave node 可以自动接管 master node,但也可能 sentinel 还没检测到 master failure,master node 就自动重启了,还是可能导致上面所有的 slave node 数据被清空。

redis 主从复制的核心原理

当启动一个 slave node 的时候,它会发送一个 PSYNC 命令给 master node。

如果这是 slave node 初次连接到 master node,那么会触发一次 full resynchronization 全量复制:

  • (1)master 会启动一个后台线程,开始生成一份 RDB 快照文件,同时还会将从客户端 client 新收到的所有写命令缓存在内存中;
  • (2)RDB 文件生成完毕后, master 会将这个 RDB 发送给 slave;
  • (3)slave 会先写入本地磁盘,然后再从本地磁盘加载到内存中;
  • (4)接着 master 会将内存中缓存的写命令发送到 slave,slave 也会同步这些数据。

slave node 如果跟 master node 有网络故障,断开了连接,会自动重连,连接之后 master node 仅会复制给 slave 部分缺少的数据。

主从复制的断点续传

从 redis2.8 开始,就支持主从复制的断点续传,如果主从复制过程中,网络连接断掉了,那么可以接着上次复制的地方,继续复制下去,而不是从头开始复制一份。

master node会 在内存中维护一个 backlog,master 和 slave 都会保存一个 replica offset 还有一个 master run id,offset 就是保存在 backlog 中的。如果 master 和 slave 网络连接断掉了,slave 会让 master 从上次 replica offset 开始继续复制,如果没有找到对应的 offset,那么就会执行一次 resynchronization。

如果根据 host+ip 定位 master node,是不靠谱的,如果 master node 重启或者数据出现了变化,那么 slave node 应该根据不同的 run id 区分。

无磁盘化复制

master 在内存中直接创建 RDB,然后发送给 slave,不会在自己本地落地磁盘了。只需要在配置文件中开启 repl-diskless-sync yes 即可。

1
2
3
4
repl-diskless-sync yes

# 等待 5s 后再开始复制,因为要等更多 slave 重新连接过来
repl-diskless-sync-delay 5

复制的完整流程

slave node 启动时,会在自己本地保存 master node 的信息,包括 master node 的host和ip,但是复制流程没开始。

slave node 内部有个定时任务,每秒检查是否有新的 master node 要连接和复制,如果发现,就跟 master node 建立 socket 网络连接。然后 slave node 发送 ping 命令给 master node。如果 master 设置了 requirepass,那么 slave node 必须发送 masterauth 的口令过去进行认证。master node 第一次执行全量复制,将所有数据发给 slave node。而在后续,master node 持续将写命令,异步复制给 slave node。

全量复制

  • master 执行 bgsave ,在本地生成一份 rdb 快照文件。

  • master node 将 rdb 快照文件发送给 slave node,如果 rdb 复制时间超过 60秒(repl-timeout),那么 slave node 就会认为复制失败,可以适当调大这个参数(对于千兆网卡的机器,一般每秒传输 100MB,6G 文件,很可能超过 60s)

  • master node 在生成 rdb 时,会将所有新的写命令缓存在内存中,在 slave node 保存了 rdb 之后,再将新的写命令复制给 slave node。

  • 如果在复制期间,内存缓冲区持续消耗超过 64MB,或者一次性超过 256MB,那么停止复制,复制失败。

    1
    client-output-buffer-limit slave 256MB 64MB 60
  • slave node 接收到 rdb 之后,清空自己的旧数据,然后重新加载 rdb 到自己的内存中,同时基于旧的数据版本对外提供服务。

  • 如果 slave node 开启了 AOF,那么会立即执行 BGREWRITEAOF,重写 AOF。

增量复制

  • 如果全量复制过程中,master-slave 网络连接断掉,那么 slave 重新连接 master 时,会触发增量复制。

  • master 直接从自己的 backlog 中获取部分丢失的数据,发送给 slave node,默认 backlog 就是 1MB。

  • master 就是根据 slave 发送的 psync 中的 offset 来从 backlog 中获取数据的。

heartbeat

主从节点互相都会发送 heartbeat 信息。

master 默认每隔 10秒 发送一次 heartbeat,slave node 每隔 1秒 发送一个 heartbeat。

redis基于哨兵实现高可用

哨兵的介绍

sentinel,中文名是哨兵。哨兵是 redis 集群机构中非常重要的一个组件,主要有以下功能:

  • 集群监控:负责监控 redis master 和 slave 进程是否正常工作。

  • 消息通知:如果某个 redis 实例有故障,那么哨兵负责发送消息作为报警通知给管理员。

  • 故障转移:如果 master node 挂掉了,会自动转移到 slave node 上。

  • 配置中心:如果故障转移发生了,通知 client 客户端新的 master 地址。

哨兵用于实现 redis 集群的高可用,本身也是分布式的,作为一个哨兵集群去运行,互相协同工作。

  • 故障转移时,判断一个 master node 是否宕机了,需要大部分的哨兵都同意才行,涉及到了分布式选举的问题。

  • 即使部分哨兵节点挂掉了,哨兵集群还是能正常工作的,因为如果一个作为高可用机制重要组成部分的故障转移系统本身是单点的,那就很很不合理了。

哨兵的核心知识

  • 哨兵至少需要 3 个实例,来保证自己的健壮性。

  • 哨兵 + redis 主从的部署架构,是不保证数据零丢失的,只能保证 redis 集群的高可用性。

  • 对于哨兵 + redis 主从这种复杂的部署架构,尽量在测试环境和生产环境,都进行充足的测试和演练。

哨兵集群必须部署 2 个以上节点, 经典的 3 节点哨兵集群是这样的

1
2
3
4
5
6
7
8
9
       +----+
| M1 |
| S1 |
+----+
|
+----+ | +----+
| R2 |----+----| R3 |
| S2 | | S3 |
+----+ +----+

配置 quorum=2,如果 M1 所在机器宕机了,那么三个哨兵还剩下 2 个,S2 和 S3 可以一致认为 master 宕机了,然后选举出一个来执行故障转移,同时 3 个哨兵的 majority 是 2,所以还剩下的 2 个哨兵运行着,就可以允许执行故障转移.

redis 哨兵主备切换的数据丢失问题

  • 异步复制导致的数据丢失
    因为 master -> slave 的复制是异步的,所以可能有部分数据还没复制到 slave,master 就宕机了,此时这部分数据就丢失了。

  • 脑裂导致的数据丢失
    脑裂,也就是说,某个 master 所在机器突然脱离了正常的网络,跟其他 slave 机器不能连接,但是实际上 master 还运行着。此时哨兵可能就会认为 master 宕机了,然后开启选举,将其他 slave 切换成了 master。这个时候,集群里就会有两个 master ,也就是所谓的脑裂

    此时虽然某个 slave 被切换成了 master,但是可能 client 还没来得及切换到新的 master,还继续向旧 master 写数据。因此旧 master 再次恢复的时候,会被作为一个 slave 挂到新的 master 上去,自己的数据会清空,重新从新的 master 复制数据。而新的 master 并没有后来 client 写入的数据,因此,这部分数据也就丢失了。

数据丢失问题的解决方案

进行如下配置:

1
2
min-slaves-to-write 1  ##  表示要求至少有1个slave
min-slaves-max-lag 10 ## 表示数据复制和同步的延迟不能超过10秒
  • 减少异步复制数据的丢失
    有了 min-slaves-max-lag 这个配置,就可以确保说,一旦 slave 复制数据和 ack 延时太长,超过10s,就认为可能 master 宕机后损失的数据太多了,那么就拒绝写请求,这样可以把 master 宕机时由于部分数据未同步到 slave 导致的数据丢失降低的可控范围内。

  • 减少脑裂的数据丢失
    如果一个 master 出现了脑裂,跟其他 slave 丢了连接,那么上面两个配置可以确保说,如果不能继续给指定数量的 slave 发送数据,而且 slave 超过 10 秒没有给自己 ack 消息,那么就直接拒绝客户端的写请求。因此在脑裂场景下,最多就丢失 10 秒的数据。

sdown 和 odown 转换机制

  • sdown 是主观宕机,就一个哨兵如果自己觉得一个 master 宕机了,那么就是主观宕机

  • odown 是客观宕机,如果 quorum 数量的哨兵都觉得一个 master 宕机了,那么就是客观宕机

(1)sdown 达成的条件很简单,如果一个哨兵 ping 一个 master,超过了 is-master-down-after-milliseconds 指定的毫秒数之后,就主观认为 master 宕机了;

(2)如果一个哨兵在指定时间内,收到了 quorum 数量的其它哨兵也认为那个 master 是 sdown 的,那么就认为是 odown 了。

哨兵集群的自动发现机制

  • 哨兵互相之间的发现,是通过 redis 的 pub/sub 系统实现的,每个哨兵都会往 __sentinel__:hello 这个 channel 里发送一个消息,这时候所有其他哨兵都可以消费到这个消息,并感知到其他的哨兵的存在。

  • 每隔两秒钟,每个哨兵都会往自己监控的某个 master+slaves 对应的__sentinel__:hello channel 里发送一个消息,内容是自己的 host、ip 和 runid 还有对这个 master 的监控配置。

  • 每个哨兵也会去监听自己监控的每个 master+slaves 对应的 __sentinel__:hello channel,然后去感知到同样在监听这个 master+slaves 的其他哨兵的存在。

  • 每个哨兵还会跟其他哨兵交换对 master 的监控配置,互相进行监控配置的同步。

slave 配置的自动纠正

哨兵会负责自动纠正 slave 的一些配置,比如 slave 如果要成为潜在的 master 候选人,哨兵会确保 slave 复制现有 master 的数据;如果 slave 连接到了一个错误的 master 上,比如故障转移之后,那么哨兵会确保它们连接到正确的 master 上。

slave->master 选举算法

如果一个 master 被认为 odown 了,而且 majority 数量的哨兵都允许主备切换,那么某个哨兵就会执行主备切换操作,此时首先要选举一个 slave 来,会考虑 slave 的一些信息:

  • 跟 master 断开连接的时长
  • slave 优先级
  • 复制 offset
  • run id

如果一个 slave 跟 master 断开连接的时间已经超过了 down-after-milliseconds 的 10 倍,外加 master 宕机的时长,那么 slave 就被认为不适合选举为 master。

1
(down-after-milliseconds * 10) + milliseconds_since_master_is_in_SDOWN_state

接下来会对 slave 进行排序:

  • 按照 slave 优先级进行排序,slave priority 越低,优先级就越高。

  • 如果 slave priority 相同,那么看 replica offset,哪个 slave 复制了越多的数据,offset 越靠后,优先级就越高。

  • 如果上面两个条件都相同,那么选择一个 run id 比较小的那个 slave。

quorum 和 majority

每次一个哨兵要做主备切换,首先需要 quorum 数量的哨兵认为 odown,然后选举出一个哨兵来做切换,这个哨兵还需要得到 majority 哨兵的授权,才能正式执行切换。

如果 quorum < majority,比如 5 个哨兵,majority 就是 3,quorum 设置为 2,那么就 3 个哨兵授权就可以执行切换。

但是如果 quorum >= majority,那么必须 quorum 数量的哨兵都授权,比如 5 个哨兵,quorum 是 5,那么必须 5 个哨兵都同意授权,才能执行切换。

configuration epoch

哨兵会对一套 redis master+slaves 进行监控,有相应的监控的配置。

执行切换的那个哨兵,会从要切换到的新 master(salve->master)那里得到一个 configuration epoch,这就是一个 version 号,每次切换的 version 号都必须是唯一的。

如果第一个选举出的哨兵切换失败了,那么其他哨兵,会等待 failover-timeout 时间,然后接替继续执行切换,此时会重新获取一个新的 configuration epoch,作为新的 version 号。

configuration 传播

哨兵完成切换之后,会在自己本地更新生成最新的 master 配置,然后同步给其他的哨兵,就是通过之前说的 pub/sub 消息机制。

这里之前的 version 号就很重要了,因为各种消息都是通过一个 channel 去发布和监听的,所以一个哨兵完成一次新的切换之后,新的 master 配置是跟着新的 version 号的。其他的哨兵都是根据版本号的大小来更新自己的 master 配置的

redis集群

集群介绍

Redis集群是一个提供在多个Redis节点间共享数据的程序集。主要是针对海量数据+高并发+高可用的场景。

Redis集群并不支持处理多个keys的命令, 因为这需要在不同的节点间移动数据, 从而达不到像Redis那样的性能, 在高负载的情况下可能会导致不可预料的错误.

Redis 集群通过分区来提供一定程度的可用性,在实际环境中当某个节点宕机或者不可达的情况下继续处理命令. Redis 集群的优势:

  • 自动将数据进行分片,每个 master 上放一部分数据

  • 提供内置的高可用支持,部分 master 不可用时,还是可以继续工作的

在 redis cluster 架构下,每个 redis 要放开两个端口号,比如一个是 6379,另外一个就是 加1w 的端口号,比如 16379。16379 端口号是用来进行节点间通信的,也就是 cluster bus 的东西,cluster bus 的通信,用来进行故障检测、配置更新、故障转移授权

cluster bus 用了另外一种二进制的协议,gossip 协议,用于节点间进行高效的数据交换,占用更少的网络带宽和处理时间。

节点间的内部通信机制

基本原理

集群元数据的维护采用Gossip协议,所有节点都持有一份元数据,不同的节点如果出现了元数据的变更,就不断将元数据发送给其它的节点,让其它节点也进行元数据的变更。

  • gossip好处在于,元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续打到所有节点上去更新,降低了压力;

  • 不好在于,元数据的更新有延时,可能导致集群中的一些操作会有一些滞后;

    • 10000端口:每个节点都有一个专门用于节点间通信的端口,就是自己提供服务的端口号+10000,比如 7001,那么用于节点间通信的就是 17001 端口。每个节点每隔一段时间都会往另外几个节点发送 ping 消息,同时其它几个节点接收到 ping 之后返回 pong。

    • 交换的信息:信息包括故障信息,节点的增加和删除,hash slot 信息等等。

gossip 协议

gossip 协议包含多种消息,包含 ping,pong,meet,fail 等等。

  • meet:某个节点发送 meet 给新加入的节点,让新节点加入集群中,然后新节点就会开始与其它节点进行通信。
    1
    redis-trib.rb add-node

其实内部就是发送了一个 gossip meet 消息给新加入的节点,通知那个节点去加入我们的集群。

  • ping:每个节点都会频繁给其它节点发送 ping,其中包含自己的状态还有自己维护的集群元数据,互相通过 ping 交换元数据。

  • pong:返回 ping 和 meeet,包含自己的状态和其它信息,也用于信息广播和更新。

  • fail:某个节点判断另一个节点 fail 之后,就发送 fail 给其它节点,通知其它节点说,某个节点宕机了。

ping 消息深入

ping 时要携带一些元数据,如果很频繁,可能会加重网络负担。

每个节点每秒会执行 10 次 ping,每次会选择 5 个最久没有通信的其它节点。当然如果发现某个节点通信延时达到了 cluster_node_timeout / 2,那么立即发送 ping,避免数据交换延时过长,落后的时间太长了。比如说,两个节点之间都 10 分钟没有交换数据了,那么整个集群处于严重的元数据不一致的情况,就会有问题。所以 cluster_node_timeout 可以调节,如果调得比较大,那么会降低 ping 的频率。

每次 ping,会带上自己节点的信息,还有就是带上 1/10 其它节点的信息,发送出去,进行交换。至少包含 3 个其它节点的信息,最多包含 总节点数减 2 个其它节点的信息。

Redis 集群的数据分片

Redis 集群引入了 哈希槽的概念.

Redis 集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽.集群的每个节点负责一部分hash槽,举个例子,比如当前集群有3个节点,那么:

1
2
3
节点 A 包含 0 到 5500号哈希槽.
节点 B 包含5501 到 11000 号哈希槽.
节点 C 包含11001 到 16384号哈希槽.

这种结构很容易添加或者删除节点. 比如如果我想新添加个节点D, 我需要从节点 A, B, C中得部分槽到D上. 如果我想移除节点A,需要将A中的槽移到B和C节点上,然后将没有任何槽的A节点从集群中移除即可. 由于从一个节点将哈希槽移动到另一个节点并不会停止服务,所以无论添加删除或者改变某个节点的哈希槽的数量都不会造成集群不可用的状态.

redis cluster 的高可用与主备切换原理

redis cluster 的高可用的原理,几乎跟哨兵是类似的。

判断节点宕机

如果一个节点认为另外一个节点宕机,那么就是 pfail,主观宕机。如果多个节点都认为另外一个节点宕机了,那么就是 fail,客观宕机,跟哨兵的原理几乎一样,sdown,odown。

在 cluster-node-timeout 内,某个节点一直没有返回 pong,那么就被认为 pfail。

如果一个节点认为某个节点 pfail 了,那么会在 gossip ping 消息中,ping 给其他节点,如果超过半数的节点都认为 pfail 了,那么就会变成 fail。

从节点过滤

对宕机的 master node,从其所有的 slave node 中,选择一个切换成 master node。

检查每个 slave node 与 master node 断开连接的时间,如果超过了 cluster-node-timeout * cluster-slave-validity-factor,那么就没有资格切换成 master。

从节点选举

每个从节点,都根据自己对 master 复制数据的 offset,来设置一个选举时间,offset 越大(复制数据越多)的从节点,选举时间越靠前,优先进行选举。

所有的 master node 开始 slave 选举投票,给要进行选举的 slave 进行投票,如果大部分 master node(N/2 + 1)都投票给了某个从节点,那么选举通过,那个从节点可以切换成 master。

从节点执行主备切换,从节点切换为主节点。